Get Instant Access
to This Blueprint

Data Business Intelligence icon

Leverage Big Data by Starting Small

Big data is becoming simply data. Get to the core of your business needs and pinpoint the data sources that will propel their processes.

  • The desire for rapid decision making is increasing and the complexity of data sources is growing; business users want access to several new data sources, but in a way that is controlled and easily consumable.
  • Organizations may understand the transformative potential of a big data initiative, but struggle to make the transition from the awareness of its importance to identifying a concrete use case for a pilot project.
  • The big data ecosystem is crowded and confusing, and a lack of understanding of that ecosystem may cause a paralysis for organizations.

Our Advice

Critical Insight

  • Big data is simply data. With technological advances, what was once considered big data is now more approachable for all organizations irrespective of size.
  • The variety element is the key to unlocking big data value. Drill down into your specific use cases more effectively by focusing on what kind of data you should use.
  • Big data is about deep analytics. Deep doesn’t mean difficult. Visualization of data, integrating new data, and understanding associations are ways to deepen your analytics.

Impact and Result

  • Establish a foundational understanding of what big data entails and what the implications of its different elements are for your organization.
  • Confirm your current maturity for taking on a big data initiative, and make considerations for core data management practices in the context of incorporating big data.
  • Avoid boiling the ocean by pinpointing use cases by industry and functional unit, followed by identifying the most essential data sources and elements that will enable the initiative.
  • Leverage a repeatable pilot project framework to build out a successful first initiative and implement future projects en-route to evolving a big data program.

Leverage Big Data by Starting Small Research & Tools

Start here – read the Executive Brief

Read our concise Executive Brief to find out why you should leverage big data, review Info-Tech’s methodology, and understand the four ways we can support you in completing this project.

1. Undergo big data education

Build a foundational understanding of the current big data landscape.

2. Assess big data readiness

Appraise current capabilities for handling a big data initiative and revisit the key data management practices that will enable big data success.

3. Pinpoint a killer big data use case

Armed with Info-Tech’s variety dimension framework, identify the top use cases and the data sources/elements that will power the initiative.


Member Testimonials

After each Info-Tech experience, we ask our members to quantify the real-time savings, monetary impact, and project improvements our research helped them achieve. See our top member experiences for this blueprint and what our clients have to say.

7.0/10


Overall Impact

3


Average Days Saved

Client

Experience

Impact

$ Saved

Days Saved

Fond du Lac Band of Lake Superior Chippewa

Guided Implementation

7/10

N/A

3

RJRGLEANER Communications Group

Guided Implementation

10/10

$25,000

20

Team members on time, Provide useful insights and guidelines. No real bad experience. They have been very helpful.

The York Water Company

Guided Implementation

9/10

N/A

N/A

It's hard to estimate time and money savings, but it was a valuable process. We always have multiple large projects running out of our department, ... Read More


Workshop: Leverage Big Data by Starting Small

Workshops offer an easy way to accelerate your project. If you are unable to do the project yourself, and a Guided Implementation isn't enough, we offer low-cost delivery of our project workshops. We take you through every phase of your project and ensure that you have a roadmap in place to complete your project successfully.

Module 1: Undergo Big Data Education

The Purpose

  • Understand the basic elements of big data and its relationship to traditional business intelligence.

Key Benefits Achieved

  • Common, foundational knowledge of what big data entails.

Activities

Outputs

1.1

Determine which of the four Vs is most important to your organization.

  • Relative importance of the four Vs from IT and business perspectives
1.2

Explore new data through a social lens.

1.3

Brainstorm new opportunities for enhancing current reporting assets with big data sources.

  • High-level improvement ideas to report artifacts using new data sources

Module 2: Assess Your Big Data Readiness

The Purpose

  • Establish an understanding of current maturity for taking on big data, as well as revisiting essential data management practices.

Key Benefits Achieved

  • Concrete idea of current capabilities.
  • Recommended actions for developing big data maturity.

Activities

Outputs

2.1

Determine your organization’s current big data maturity level.

  • Established current state maturity
2.2

Plan for big data management.

  • Foundational understanding of data management practices in the context of a big data initiative

Module 3: Pinpoint Your Killer Big Data Use Case

The Purpose

  • Explore a plethora of potential use cases at the industry and business unit level, followed by using the variety element of big data to identify the highest value initiative(s) within your organization.

Key Benefits Achieved

  • In-depth characterization of a pilot big data initiative that is thoroughly informed by the business context.

Activities

Outputs

3.1

Identify big data use cases at the industry and/or departmental levels.

  • Potential big data use cases
3.2

Conduct big data brainstorming sessions in collaboration with business stakeholders to refine use cases.

  • Potential initiatives rooted in the business context and identification of valuable data sources
3.3

Revisit the variety dimension framework to scope your big data initiative in further detail.

  • Identification of specific data sources and data elements
3.4

Create an organizational 4-column data flow model with your big data sources/elements.

3.5

Evaluate data sources by considering business value and risk.

  • Characterization of data sources/elements by value and risk
3.6

Perform a value-effort assessment to prioritize your initiatives.

  • Prioritization of big data use cases

Module 4: Structure a Big Data Proof-of-Concept Project

The Purpose

  • Put together the core components of the pilot project and set the stage for enterprise-wide support.

Key Benefits Achieved

  • A repeatable framework for implementing subsequent big data initiatives.

Activities

Outputs

4.1

Construct a work breakdown structure for the pilot project.

  • Comprehensive list of tasks for implementing the pilot project
4.2

Determine your project’s need for a data scientist.

  • Decision on whether or not a data scientist is needed, and where data science capabilities will be sourced
4.3

Establish the staffing model for your pilot project.

  • RACI chart for the project
4.4

Perform a detailed cost/benefit analysis.

  • Big data pilot cost/benefit summary
4.5

Make architectural considerations for supporting the big data initiative.

  • Customized, high-level architectural model that incorporates technologies that support big data
Leverage Big Data by Starting Small preview picture

About Info-Tech

Info-Tech Research Group is the world’s fastest-growing information technology research and advisory company, proudly serving over 30,000 IT professionals.

We produce unbiased and highly relevant research to help CIOs and IT leaders make strategic, timely, and well-informed decisions. We partner closely with IT teams to provide everything they need, from actionable tools to analyst guidance, ensuring they deliver measurable results for their organizations.

MEMBER RATING

7.0/10
Overall Impact

3
Average Days Saved

After each Info-Tech experience, we ask our members to quantify the real-time savings, monetary impact, and project improvements our research helped them achieve.

Read what our members are saying

What Is a Blueprint?

A blueprint is designed to be a roadmap, containing a methodology and the tools and templates you need to solve your IT problems.

Each blueprint can be accompanied by a Guided Implementation that provides you access to our world-class analysts to help you get through the project.

Need Extra Help?
Speak With An Analyst

Get the help you need in this 4-phase advisory process. You'll receive 10 touchpoints with our researchers, all included in your membership.

Guided Implementation 1: Undergo big data education
  • Call 1: Discuss the evolution of big data and the current landscape in terms of uses and technology.

Guided Implementation 2: Assess big data readiness
  • Call 1: Discuss Info-Tech’s maturity model and how to evaluate your organization’s current capabilities.
  • Call 2: Revisit key data management practices to consider before taking on big data.

Guided Implementation 3: Pinpoint a killer big data use case
  • Call 1: Discuss industry and department use cases you identified.
  • Call 2: Refine the use cases according to your business context.
  • Call 3: Review your top use cases and plan for the next phase.

Guided Implementation 4: Structure a big data proof-of-concept project
  • Call 1: Discuss the formation of an effective project team.
  • Call 2: Review prioritized initiatives, preliminary work breakdown structure, CSFs, and risks.
  • Call 3: Understand the operational and architecture considerations for big data.
  • Call 4: Discuss how to successfully put together and execute a stakeholder presentation.

Authors

Daniel Ko

Kolade Odetoyinbo

Steven Wilson

Contributors

  • Albert Hui, Principal, Data Economist
  • Lynn Langit, Big Data and Cloud Architect, Technical Author
  • Nick Burch, Chief Technology Officer, Quanticate
  • Olivier Riboux, Director of BI Consulting, Project X Ltd.
  • Paresh Yadav, Big Data/Hadoop Architect, StratIS Inc.
  • Sean Jackson, Chief Marketing Officer, Exasol
Visit our IT Cost Optimization Center
Over 100 analysts waiting to take your call right now: 1-519-432-3550 x2019